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ABSTRACT 

The miniaturization of a sound-detection system is of great interest to applications such 

as sniper location. Current systems in use are relatively large and do not provide for the 

unencumbered movement of the warfighter. Inspiration for a smaller MEMS-based 

sensor is therefore taken from the aural system of the fly Ormia ochracea. The focus of 

this thesis is the design of an integrated and miniaturized device utilizing commercial-off-

the-shelf readout electronics with the biologically inspired sensor. An analysis of 

previously used techniques is presented along with a novel fully integrated miniaturized 

design. Specific investigations include integration with external readout electronics, a 

hybrid discrete component design, and the fully integrated single-package design. Results 

include successful operation at all levels of integration and a thorough analysis of the 

performance of the fully integrated design. 
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EXECUTIVE SUMMARY 

Sniper-location technology is a mainstream product employed by the military utilized 

around the world. It provides crucial information regarding the origin of enemy fire, 

which may sometimes be difficult to discern in urban or rural environments. 

Several systems currently exist that employ antennae, multiple sensors, or even 

man-portable devices [1], [2]. These devices are all relatively large and do not provide for 

the unencumbered movement of the warfighter. Therefore, a need to miniaturize this 

capability exists. To this end, biological inspiration has been previously drawn from the 

aural system of the fly Ormia ochracea [3]. 

In larger animals directional sensitivity is gleaned by sensing differences in 

pressure at each hearing organ. This is easily accomplished since the separation distance 

of the hearing organs in larger animals is significant relative to the wavelength of most 

audible sound. Thus, a pressure difference, large enough to be distinguished by the brain, 

can be discerned. As the separation between hearing organs becomes smaller the 

requirement for the animal to process smaller differences in pressure increases [4], [5].  

When the hearing organs of insects such as the Ormia ochracea are considered, 

the wavelength of most audible sound becomes very large relative to the organ separation 

distance. The fly, therefore, uses a unique hearing organ that can be modeled as a MEMS 

device. The directional information for this hearing organ lies in the amplitude of 

oscillations in different resonant modes. Interdigitated comb fingers provide capacitive 

transduction of sensor movement [5]. 

This sensor can then be paired with commercial-off-the-shelf (COTS) technology 

to provide full-readout functionality. In previous work, and in this thesis, the Irvine 

Sensors MS3110 Universal Capacitive Readout Integrated Circuit (IC) was utilized to 

this end [6]. This switched-capacitor technology provided excellent resolution for this 

application. The focus of this thesis lies in the full integration of the readout electronics 

with the previously designed directional sound sensor. 

Three different integrative techniques were detailed in this study. Integration with 

completely separate and discrete components was first investigated. The readout 



 xvi 

electronics were used packaged in both a custom package, termed here a “hybrid design,” 

and with a commercially provided evaluation board. In both cases connections between 

device components introduced variable parasitic capacitances. These parasitics required 

that the user continually optimize the readout electronics for consistent performance.  

This thesis introduced a third integrative technique where all of the miniaturized 

components were encapsulated on one device package. Results of this packaging include 

reduced variability of parasitic capacitances, ease of use, and high angular resolution. 
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I. INTRODUCTION  

A. BACKGROUND 

 The Microelectromechanical Systems (MEMS) directional microphone 

investigated in this project originated from the parasitoid fly Ormia ochracea. In larger 

animals, directional sensitivity is gleaned by sensing differences in pressure fields at each 

hearing organ. This is easily accomplished since the separation distance of the hearing 

organs in larger animals is significant relative to the wavelength of most audible 

sound [1]. The wavelength of sound is given by the well-known formula 

 ! = c
f

 (I.1)  

where !  is wavelength in meters, c  is the speed of sound in meters per second, and f  is 

frequency in hertz. 

The key concept is that a pressure difference large enough for the brain to discern 

must be present across the aural anatomy. As the separation between hearing organs 

becomes smaller the requirement for the animal to process smaller differences in pressure 

increases. When the hearing organs of insects such as the Ormia ochracea are considered, 

the wavelength of most audible sound becomes very large relative to the organ separation 

distance [1].   

 

Figure 1.   The parasitoid fly Ormia Ochracea pictured on a fingernail for scale 
(From [2]). 
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1. The Anatomy of the Ormia Ochracea Hearing Organ 

The difference in an incident pressure field at each hearing organ of an insect is 

relatively small, thus new resources must be utilized to glean directional sensitivity. 

The parasitoid fly Ormia ochracea does this with a novel hearing organ shown in 

Figure 2 [3], [4].  

 

 

Figure 2.   The hearing organ of the Ormia ochracea fly (From [3]). 

 The hearing organ consists of two tympana mechanically coupled by a circular 

rod [3]. Under an incident sound wave the organ responds with two main resonant modes 

as illustrated in Figure 3. The first is the rocking mode and is the most fundamental of all 

resonant modes. In this mode the device rocks from side to side, each tympana 180 

degrees out of phase with the other. The other main resonant mode is the bending mode. 

In this mode the device tips move upward and downward in phase with each other [3].   
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Figure 3.   A visual representation of resonant modes of fly’s hearing organ (From [3]).  

The theoretical frequency response of this simplified mechanical model when 

excited by sound incident at 45 degrees from normal is presented in Figure 4. Here, the 

expected response of each side of the device is presented as a separate plot on the same 

graph. One can note that the interference from the bending mode contributes 

destructively to the rocking mode on one side of the device while contributing 

constructively to the other side; this is explained by the aforementioned phase difference. 

The frequency response clearly shows that resonance at the bending mode induces much 

larger displacement amplitudes suggesting greater ease of detection. 

 

 

Figure 4.   Theoretical frequency response of the fly’s hearing organ (From [1]). 
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The information regarding the direction of the incident sound is found in the 

amplitude of the response [3], [4].  

2. Modeling as a MEMS Device 

 Touse et al. showed that this organ can be modeled by a simple MEMS 

device [4]. This device was fabricated using the Silicon on Insulator Multi-User MEMS 

Process (SOIMUMPs) and was, therefore, subject to the constraints set forth by 

MEMSCAP Incorporated, a custom-MEMS foundry [5].  

 The device was connected to the substrate via two legs while the remainder of the 

device was freestanding as shown in Figure 5. The substrate behind the device was 

removed to eliminate squeezed-film damping. Each wing had a number of comb fingers 

that are interdigitated with stationary comb fingers connected to the surrounding 

substrate. These comb fingers can be thought of as parallel plate capacitors. As each wing 

moves the capacitance associated with its comb fingers changed as the effective surface 

area of the parallel plate capacitor changed. A user detected the deflection of the device 

by sensing the change in capacitance. 

 

 

Figure 5.   The hearing organ modeled as a MEMS device (From [1], [4]). 

In a typical device, each wing was 1 mm2 while the bridge was 500 µm  by 500 

µm. The legs were 50 µm  by 100 µm. Finally, the comb finger dimensions were chosen 

to be 100 µm  by 2 µm  with a separation distance of 2 µm. By minimizing the comb 

finger width and separation distance while maximizing the comb finger length, the effects 
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of added mass were minimized while the capacitive effects were maximized. Throughout 

the design process, the design constraints of the SOIMUMPs fabrication process were 

followed.  

 The typical frequency response of this design showed a distinct resonance at both 

the rocking and bending mode as shown in Figure 6. Further, the amplitude at the 

bending frequency showed a cosine dependence with the angle of incidence as depicted 

in Figure 7 [1], [4]. When the angle of incidence was normal to the plane of the device, 

the magnitude of the response was the largest while an angle of incidence parallel to the 

substrate gave no response. To understand this phenomenon, consider the case when the 

angle of incidence was parallel to the substrate. In this case, sound pressure on either side 

of the wings was nearly the same producing no deflection. The converse is true when the 

angle of incidence was normal to the organ. Here the phase difference between the sound 

pressure field on the front and backsides of the wings generated the largest pressure 

difference resulting in the largest amplitude of oscillation [3].  

 
 

 

Figure 6.   A typical modeled versus experimental frequency response of the MEMS 
device (After [1], [4]). 
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Figure 7.   An example of the modeled versus experimental frequency response verifying 
a cosine dependence on the angle of incidence (From [3]) . 

3. Sniper Fire Detection 

  Several systems currently exist that have employed antennae, multiple 

sensors, or even man-packable devices. The Boomerang, shown in Figure 8, developed 

by BBN Technologies, is a vehicle-mounted system employing multiple antennae in 

order to identify the origin of sniper fire. The Boomerang Warrior-X, shown in Figure 9, 

is a man-packable device with similar capabilities as the vehicle mounted 

Boomerang [6], [7]. 
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Figure 8.   The vehicle mounted boomerang mounted on a vehicle (From [6]). 

  

Figure 9.   The man-packable Boomerang Warrior-X shown being worn on a solider 
(From [7]). 

What these systems all have in common is that they are cumbersome. While they 

do provide critical information, they also reduce the ability of the warfighter to react. 

Through MEMS implementation and Integrated Circuit (IC) technology, large steps 

forward in miniaturization are possible. 
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B. OBJECTIVE  

 The purpose of this study was to integrate the MEMS directional sound sensor 

with readout electronics while keeping the system physical dimensions as small as 

possible. In this way, the most efficient and least invasive sensor packaging possible for 

military application was sought. To this end, the Irvine Sensors MS3110 Universal 

Capacitive Readout IC was used. This IC has previously been used successfully in many 

high sensitivity capacitive sensing applications [8], [9]. In addition, the small footprint 

offered by the MS3110 was highly desirable in overall system miniaturization. 

C. THESIS ORGANIZATION 

An overview of the Irvine Sensors MS3110 Universal Capacitive Readout IC and 

the steps necessary for successful integration are presented in Chapter II. Special 

emphasis was placed on troubleshooting and lessons learned so as to prevent their 

repetition in future work.  

The switched-capacitor implementation of the MS3110 is investigated also in 

Chapter II. To this end, the reader is presented with a comprehensive analysis of the 

theory of operation. With a better understanding of the inner workings of the MS3110, its 

proper implementation can be ensured. 

Next, the use of the Kulicke & Soffa (K&S) 4525AD wire bonder for MS3110 

integration is detailed in Chapter II. Special emphasis was placed on troubleshooting to 

ensure the results obtained in this study are easily repeatable in the future. The 

functionality of the various necessary MS3110 connections were also discussed. 

Finally, a significant portion of Chapter II was devoted to diagnostic techniques 

developed for correct MS3110 implementation. This portion of the chapter provides the 

reader with critical information necessary to efficiently use the MS3110. 

Sensor implementation is described and compared at various levels of integration 

in Chapter III. Integration techniques with discrete components was first investigated 

then contrasted by an investigation of a fully integrated design with all components 

encapsulated in a single custom device package. 
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The original work in Chapter III demonstrated that the fully integrated design was 

highly desirable relative to the other integrated designs. Successful operation of the fully 

integrated design was demonstrated through rigorous testing in an anechoic chamber. 
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II. MS3110 UNIVERSAL CAPACITIVE READOUT IC 

A. OVERVIEW  

Three main requirements were central in choosing appropriate processing 

electronics for this application:  small size, fast sampling rate, and the ability to detect 

capacitance changes in the femto-farad range. The Irvine Sensors MS3110 Universal 

Capacitive Readout IC was the only commercially available technology found able to 

meet these needs. 

The MS3110 is sufficiently small with dimensions 94.7 mm by 96.1 mm [10]. 

Further, the MS3110 is capable of sensing capacitive changes down to 4×10–18 F Hz  

[11]. The MS3110 samples at 100 kHz [11] which is more than adequate to capture 

signals in the frequency range of interest (2–6 kHz). By the Nyquist theorem a 6 kHz 

signal would require a sampling frequency of at least 12 kHz. 

The MS3110 comes in two forms:  a prepackaged 16-pin small outline integrated 

circuit (SOIC) shown in Figure 10 and a bare die shown in Figure 21. An evaluation 

board, as shown in Figure 11, was used to allow quick testing of the SOIC without time 

intensive integration requirements like soldering. The SOIC was inserted into the Zero 

Insert Force (ZIF) socket on the board and leads were connected to the device, on which 

the capacitive change would be processed into an output waveform. 

 

Figure 10.   Here a close up view of the MS3110 16-Pin SOIC is presented (From [11]). 
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Figure 11.   Here the interconnects of the MS3110 evaluation board are shown 
(From [12]). 

B. THEORY OF OPERATION 

There are three main components to the MS3110. They are a Capacitive 

Transimpedance Amplifier (IAMP), a low-pass filter, and an output buffer. The 

functionality of the MS3110 can best be understood by first considering the IAMP. This 

stage consists of a capacitor bridge followed by an amplifier. The bridge was driven by a 

100 kHz square wave that oscillates between ground and 2.25V. The bridge was thus an 

implementation of switched capacitor (SC) technology. 
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.  

Figure 12.   The MS3110 is presented in block diagram form (After [11]). 

1. The Switched Capacitor as a Resistor 

To best understand the implementation of the capacitor bridge in the MS3110 

IAMP, a brief introduction to SC technology is appropriate. SC technology is popular in 

modern very large scale integration (VLSI) circuits since capacitors are much easier to 

fabricate reliably than resistors. 

To begin, recall that current is charge per unit time and Kirchhoff’s Current Law 

(KCL) are given by 

 i = dq
dt

 (II.1) 

 , ,in n out n
n n
i i=∑ ∑  (II.2) 

where n  spans the set of current branches at a given node, iu ,v  is current in the u  

direction at node v , q  is charge, and t  is time. These relationships can be extended to 

discrete time in the form of a charge conservation concept over the set of capacitors M  

 !q k[ ] = qin,M k[ ]
M
" # qout ,M k[ ]

M
"  (II.3) 
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where ,u vq is charge in the u  direction over the set of capacitors v , and k is a sampled 
interval of time. 

 
Figure 13.   This simple SC circuit models a resistor (After [13]). 

Consider the simple SC circuit, shown in Figure 13, with two voltage sources 

connected in parallel, via independent switches, with a capacitor. The switches are 180 

degrees out of phase with each other with a period of T seconds. As switch one is closed 

and switch two is opened the charge, q , held by the capacitor is given by 

 1,q CV=   (II.4) 

where C  is the capacitance in farads and V1 is the voltage across the first voltage source. 
If switch two is closed and switch one is opened the charge on the capacitor is given by 
 
 !q = CV2,   (II.5) 

where q′  is the charge held in the capacitor and V2  is the voltage across the second 
voltage source. Thus, the total charge moved can be described by  
 
 !q = q " #q = C V1 "V2( ).   (II.6) 

Because current is described as charge moved per unit time we get 
 

 ( )1 2 .
C V VqI

T T
−Δ= =   (II.7) 

As this process is repeated, charge is constantly moved at a rate given by (II.7). Finally, 
by rearranging Ohm’s Law we find the equivalent resistance as 
 

 R = !v
I

= T
C
.   (II.8) 

Thus, through using SC technology a capacitor can be modeled as a resistor with 
resistance T C [13]. 
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2. Capacitive Transimpedance Amplifier Analysis 

From above we have seen how a capacitor can be modeled as a resistor in a SC 

network. This idea will be used to simplify the IAMP operation analysis.  

 

Figure 14.   Here a circuit diagram of IAMP capacitor bridge is presented (After [12]). 

Note that the capacitors CS1 and CS2 in Figure 14 are internal to the MS3110 

while the capacitors CS1IN and CS2IN reside on the MEMS directional sensor. CS1IN 

and CS2IN are interchangeable but for the purposes of this discussion let CS1IN 

represent the capacitance of the interdigitated comb fingers on the perimeter of the 

MEMS wings. This capacitance varied as the wings moved. CS2IN is a capacitor bank on 

the MEMS sensor that was closely matched to the stationary value of CS1IN. CS2IN was 

a fixed value and did not change throughout the device operation. Finally, we can 

combine the capacitors in parallel  

 CS1T = CS1+CS1IN  (II.9) 

 2 2 2TCS CS CS IN= +  (II.10) 

to yield the simplified schematic in Figure 15. 
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Figure 15.   Here a simplified schematic of the bridge is presented. 

Here, CS1T varied with the displacement of the MEMS wings while CS2T remained 

constant. Using a conceptual understanding of SC technology the following equivalencies 

can be made 

 R1 =
T

CS1T
  (II.11) 

 2 .
2T

TR
CS

=   (II.12) 

 

 
Figure 16.   Here the switched capacitors of the IAMP circuit are shown as equivalent 

resistors. 



 17 

As R1 varied the voltage divider stipulates that the signal value at the amplifier 

input also varied. This signal was then amplified before the next stage of the MS3110.  

This amplifier is in an inverting configuration resulting in a signal at the amplifier 

output that is 180 degrees out of phase with the input signal. The overall gain of the 

amplifier was largely a function of, and inversely proportional to, the feedback capacitor 

CF as shown in Figure 12. In other words, the larger the feedback capacitor value the 

smaller the output and vice versa. However, lowering the feedback capacitance too far 

risked saturating the output of the amplifier and clipping the output signal or introducing 

harmonic distortion into the signal. Touse has previously established that a value of 1 pF 

is generally a reasonable compromise between signal strength and distortion [1]. The 

very low changes in capacitance in this application were generally not a concern. 

3. Low Pass Filter and Output Buffer Analysis 

The next main component in the MS3110 was a low pass filter (LPF) that consists 

of two sub-components:  a zero order hold (ZOH) circuit and a two-pole reconstruction 

LPF. The main function of this component was to take the digital output of the IAMP and 

convert it to an analog signal [11]. 

The ZOH circuit takes a discrete time input and interpolates between samples 

with a zero-order polynomial. The resulting output of the ZOH was a step function with a 

significant high frequency component. These high frequencies were then eliminated via 

the two-pole LPF. 

 The LPF 3dB frequency was piecewise adjustable from 500 Hz to 8 kHz with 

nine possible discrete values within these extrema. It should also be noted that the 

bandwidth selection error could be as high as +/- 21% [11]. The relative simplicity of this 

LPF resulted in a long transition between pass and stop bands with a roll-off of 40 

dB/decade and thus could not be neglected.  

The 3dB frequency for this filter dramatically affected the output of the MS3110. 

Choosing a low frequency provided excellent harmonic rejection but if the frequency of 
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interest is above the cut-off frequency it suffered attenuation. Conversely, if a high 3 dB 

frequency was used the frequency of interest suffered less attenuation, but the same was 

true of the unwanted harmonics. 

The output buffer was the last main component in the MS3110. The output buffer 

provided three main functional benefits. First, the buffer provided low output impedance. 

This is highly desirable when connecting follow-on electronics as the lower the output 

impedance the more the device will serve as an ideal source. Second, the buffer provided 

a final gain to boost the signal strength. This gain is nominally at 4 V/V and is adjustable 

to 8 V/V. An additional fine gain trim is available and piecewise adjustable from -15% to 

+15% in 2.4 mV/V steps. The fine gain trim was accurate to +/- 300 mV/V. Finally, a DC 

offset adjustment was available to correct any intrinsic transistor mismatch in the 

amplifier. This adjustment was also piecewise adjustable within the range +/- 100 mV in 

6.25mV steps. Care was taken when providing output buffer adjustments so as to not 

saturate the transistor and clip the output waveform [11]. 

The output of the MS3110 [11] is  

 2 25
2 11.14 .T T

O P REF
CS CSV Gain V V

CF
−= ⋅ ⋅ ⋅ +  (II.13) 

 
C. MS3110 WIRE BONDING 

In this study, wire bonding of the readout electronic die was performed using a 

Kulicke & Soffa (K&S) 4525AD wire bonder, shown in Figure 17. Several connections 

were required to ensure proper operation of the MS3110 with the MEMS directional 

sound sensor. In the process of this study, deviations from the equipment documentation 

were required in order to affect proper bonding. This section provides a summary of the 

bonding process along with a discussion of the aforementioned deviation. 
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Figure 17.   Here the K&S 4525AD wire bonder is shown. 

1. Wire Bonder Setup and Use 

The component to be wire bonded was snugly inserted into the metal heating 

element as shown in Figure 18. A spring-loaded socket was available to this end and the 

socket width was manually adjusted with a screwdriver for proper fit. 

 

Figure 18.   A close up of the wire bonder working assembly is depicted with various 
components annotated. 
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The wire bonder was turned on via the red power switch near the screen shown in 

Figure 19. Nothing was under the wire bonder as the wire bonder sometimes moved 

downward during start up and could cause damage to anything directly underneath the 

capillary. The wire bonder was always allowed to heat to approximately 120°C  before 

any bonds were attempted. Once this temperature was reached care was taken when 

moving the heating element and tweezers were always used when manipulating the die 

and package to prevent personal injury.  

 

 

Figure 19.   The wire bonder left control panel is shown with various components 
annotated. 

It was important for the device to heat at the same rate as the heating element. 

This prevented heat shock to the device that might have otherwise caused damage or 

brittle and break adhesives. If multiple devices were to be wire bonded, the wire bonder 

was allowed to completely cool before inserting and heating another device. Also, the 

short amount of time the MS3110 and the MEMS device were subject to high 

temperatures did not seem to carry any adverse effects. 

It took several minutes for the wire bonder to heat to operating temperature and 

this time was used to adjust the settings. When the wire bonder was first powered on, 
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password mode was disabled when prompted via the down arrow and then enter. A new 

screen with a ‘1’ highlighted and several settings followed. The wire bonder was 

designed to be used in two phases. During the first phase the first bond was made to the 

MS3110 but the wire filament remained attached to the wire bonder capillary. During the 

second phase the second bond was made to the device package and the wire filament was 

cut and reset for the next series of bonds. The bonds were made to different materials at 

different heights; therefore, separate settings were assigned to each phase of the bonding 

process. Settings were changed by scrolling through the options with the up and down 

arrow and adjustments were made with the + or – button. Scrolling to the bottom of the 

first screen and pushing the down arrow accessed a second screen to adjust the values for 

the second bond. Scrolling to the bottom of the second screen and pushing the down 

arrow accessed a third screen that was not needed for this application. Finally, scrolling 

to the bottom of the third screen and pushing the down arrow returned the wire bonder to 

the first screen. 

Davis [14] previously established ideal settings (see Table 1) for wire bonding 

between the MS3110 and the gold contacts of commercially available packages.  

Table 1.   Optimal wire bonder settings for bonding the MS3110 to 
the custom package. 

 1st Bond 2nd Bond 

Power 1.8 2.07 

Time 5 5 

Force 1.8 1.8 

Loop N/A 4 

Tail N/A 4.5 

Ball N/A 4 
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Adjustments to ‘Loop’ and ‘Tail’ were done via dedicated + and – buttons 

provided as separate controls. ‘Ball’ was adjusted via the right arrow when the text 

immediately to the left of ‘Ball’ was highlighted. ‘Search Height’ was a function of the 

heating element height and the height of the subject to be wire bonded and was 

determined empirically during each use. 

The wire bonder was first switched to manual mode by depressing the ‘manual’ 

button on the controls before using it in the more desirable semi-automatic mode. By first 

cycling the wire bonder through manual mode, proper operation in semi-automatic mode 

was assured. Once the wire bonder was in manual mode a green light emitting diode 

(LED) next to the manual button illuminated verifying this mode of operation. The 

heating element was then moved so the device was not underneath the wire bonder and 

the black thumb button on the mouse, shown in Figure 20, was depressed and released. 

This manually engaged the wire bonder to make the first bond although no actual bond 

was desired yet. This was done once more to engage the wire bonder to make the second 

bond, again with no actual bond made. Finally, the manual button was pressed a second 

time to exit manual mode. It was verified that the wire bonder was no longer in manual 

mode by observing that the aforementioned LED no longer illuminated. 

 

Figure 20.   The wire bonder right control panel is shown here with various components 
depicted. 
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The last step before using the wire bonder was to set the search height for both 

bonds. This was done by first raising search height number 1 to a height of 1.50. For 

proper operation it was important to make the first bond to the MS3110 pad and not the 

packaging. Next, with the device to be bonded near but not directly underneath the 

capillary, the left mouse button was depressed and held. The capillary moved downward 

but did not yet make the first bond. The dedicated + and – buttons on the control panel 

were then used to adjust the height of the bonder until it was just above the MS3110 pad 

to be bonded. Once the proper height was achieved, the left mouse button was released 

and the wire bonder made the first bond to the die.  

Next, the search height number 2 was raised to a value of 1.50 with the package 

bond pad near but not directly underneath the capillary. The heating element was moved 

slightly to ensure that the MS3110 was also not directly underneath the capillary thus 

avoiding any incidental contact of the capillary with the die or package. Again, the left 

mouse button was depressed and held. After the button was depressed the capillary 

moved downward but did not make the second bond. For proper wire bonder operation it 

was important to make the second bond to the package and not the MS3110. Care was 

taken to slowly move the capillary over the packaging pad. The capillary height was then 

lowered until the capillary was actually touching the pad. The left mouse button was 

released and the wire bonder completed the bond, automatically removed any excess 

filament, and reset for the next bond. Each search height was raised slightly before 

making each bond and the above process was repeated. By doing this, damage to the die, 

package, or the wire bonder was prevented. 

2. Wire Bonder Troubleshooting 

During the course of wire bonding, malfunctions of the K&S 4525AD were 

common. This section illustrates corrective techniques taken and expands on and 

emphasizes those provided in the wire bonder documentation [15]. 

a. The Wire Bonder Will Not Engage 

A common mode of malfunction was a wire bonder that was completely 

unresponsive. This happened frequently while making multiple bonds. Often this problem 
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resulted from the filament ball protruding from the capillary being accidentally damaged 

during bonding. This was verified by checking the controls near the temperature gauge. If 

a yellow LED labeled ‘open’ was lit, the filament needed rethreading through the 

capillary (see Section c). 

b. The Wire Bonder Will Move but Not Make Bonds 

While making multiple bonds another mode of malfunction was the 

outward appearance of proper operation, but no actual bonds being made. Like the 

previous mode of malfunction, this was usually the result of damage to the filament 

during operation. This malfunction was verified by using the microscope to check if there 

is a ball at the end of the filament. If not, it needed to be rethreaded through the capillary 

(see Section c). Also, the likelihood of this malfunction was increased if improper 

settings were used, thus the settings on the wire bonder were also verified as matching 

those provided. The settings provided in Table 1 are ideal for bonding to the MS3110 pad 

to the packaging and may not be applicable to different materials. 

c. The Capillary Must Be Rethreaded 

If a malfunction caused damage to the filament it typically needed to be 

rethreaded. First, to accomplish this, the ‘Open Clamp’ button on the right side control 

panel was depressed. A corresponding LED lit to confirm an open clamp. Tweezers were 

then used to take hold of the filament above the capillary yet below the clamp. The 

filament was then gently moved downward through the capillary. If the filament did not 

move through the capillary it was inferred that the capillary was clogged. The filament 

was first removed from the capillary with tweezers to unclog it. The capillary was then 

cleaned by plunging a cleaning wire through the opening. Next, ensuring the filament 

remained in the clamp, it was inserted into the capillary and slowly moved downward 

until it protruded out the other end. Once the filament protruded out of the bottom of the 

capillary, the clamp was closed by pressing the ‘Open Clamp’ button a second time. The 

LED then turned off confirming the clamp was closed. Finally, the button in the upper 

left of the wire bonder was used to move the negative electric flame off (NEFO) solenoid 

near, but not touching, the protruding filament. The ‘Manual Spark’ button was then 
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depressed in an attempt to ball the end of the filament. This button sometimes needed to 

be pressed several times in order to create a successful ball. Once this was done the open 

LED turned off confirming a proper ball. The wire bonder was then ready for further use. 

3. MS3110 Connections 

The MS3110 has several connections that were required in order to ensure proper 

operation [10]. The pre-packaged SOIC connections are listed in [10] and were 

straightforward. The ZIF socket of the evaluation board provided user-friendly access to 

the functionality of the chip with the only requirement that the MS3110 was properly 

oriented and seated in the ZIF socket. 

The bare die, shown in Figure 21, form of the MS3110 was approached slightly 

differently in order to ensure proper operation. The MS3110 is a mixed-mode device 

and required a digital and analog ground and a digital and analog power supply. 

Reference [10] lists three pads as VNEG and one pad each as VDD and VSS. Any of the 

three VNEG pads may be used for ground. It was critical that both VDD and VPOS were 

connected to the positive rail voltage (5V) and VSS and VNEG were connected to a 

common ground. If any of these pads are left unconnected the MS3110 did not function 

properly. The remainder of the pads were connected as described in reference [10]. 

Finally, when a modular power supply and coaxial cable readout were used as 

described in Chapter III, one of the unused VNEG pads was connected to a second pin 

designated for ground. This was to provide a common ground for both the coaxial-cable 

shielding and the modular power supply. 
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Figure 21.   A microscope image of the MS3110 and pin out are presented. 

D. MS3110 DIAGNOSTICS 

Setting up and biasing the MS3110 was not a trivial task. The MS3110 offers a 

wide variety of ports to verify correct operation. Operational diagnostics is a valuable 

prelude to the experimental process and results.  

1. Internal Oscillator 

The MS3110 was driven by an internal 100 kHz square wave shown in Figure 22. 

The existence of the oscillator waveform was an excellent indicator of correct operation. 

A good indicator that the MS3110 was not powered properly was if the oscillator 

waveform could not be observed. The square wave was observed between CS1 and 

ground or CS2 and ground. 

The oscillator was powered by the 5 V power supply and a square wave was 

observable immediately after powering the MS3110 and before any other operation was 

taken. The waveform was nominally 2.25 Vpp and 100 kHz. The frequency of the square 
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wave could be adjusted with the MS3110 software via the oscillator trim. For correct 

operation the oscillator frequency was within 5 kHz of 100 kHz [16]. 

 

 

Figure 22.   The oscillator waveform measured between CS1 or CS2 and ground is shown 
here in yellow. 

2. Parasitic Capacitances 

Parasitic capacitances, at times, played a significant role in the balancing of the 

bridge in Figure 14. Sometimes the parasitic capacitances were so large that the bridge 

could not be balanced. The primary symptom of this problem was a device that was 

powered properly but the output DC voltage could not be adjusted through the full 

dynamic range or would not move at all. This was a typical situation when the leads 

attaching the MS3110 to the sensor were long. Manually manipulating the leads from the 

MS3110 to the MEMS sensor sometimes solved this problem. Adjusting the lead position 
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randomly caused the output waveform to ‘jump’ as fingers introduced more parasitic 

capacitance. Enough manipulation always yielded a system that could be balanced. 

3. Verification by Laser Vibrometer 

At times the MS3110 was properly working but the sensor was not. Verification 

of sensor operation was done with a laser vibrometer. To test this, the device was excited 

at the bending-mode resonant frequency and the displacement was measured. Although 

this test verified operation of the sensor, the frequency response of the device was also 

verified. For maximum response the sensor was always be excited at its bending-mode 

resonant frequency. Use of the vibrometer was detailed by Touse in reference [1]. 

4. Ambient Light 

The MS3110 was tested extensively with and without a light-resistant package. 

No differences in operation or internal resistances were noted. This suggests that 

exposing the MS3110 to ambient light has no effect on operation. 

5. Common Problems Associated With Setup 

a. Spontaneous Reset 

Often, while operating the MS3110 on settings previously written to the 

volatile registers, the output voltage dropped to zero. This was a symptom of a 

spontaneous reset of the MS3110 and was remedied by issuing a chip reset then rewriting 

to the volatile registers. Often this reset was the result of other software running on the 

same computer as the MS3110 software. Specifically, the laser-vibrometer software 

seemed to trigger a reset of the volatile registers. 

b. Proper Connections 

It was sometimes difficult to ensure that proper connections were made. 

Care was taken specifically when installing the leads on the J3 socket of the evaluation 

board, when connecting the soldered leads to the MS3110, and when connecting the 

soldered leads to the fully integrated MS3110 and sensor as these connections required 

fastidious attention for proper setup. 
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c. Write Jump 

When writing to the MS3110 using the software, the DC or alternating 

current (AC) coupled output waveform noticeably jumped. If this did not happen it was a 

good indication that the MS3110 was not powered or functioning properly and settings 

were not written to the volatile registers. Various diagnostic steps outlined in section 5 of 

this study were taken to find the source of this problem. 

d. Chip Reset 

Often, issuing a chip reset solved seemingly irresolvable problems. This 

was the first step taken when diagnosing a problem. 

e. Oscilloscope Setup 

Oscilloscope settings were frequently checked while troubleshooting. 

Specifically, care was taken to ensure the oscilloscope was always properly AC coupled. 

The oscilloscope must be DC coupled to balance the capacitors and thus the oscilloscope 

was frequently left in this mode as opposed to being AC coupled for proper sensing of 

capacitance. 

f. Soldered Leads  

Due to the nature of several setup configurations, some soldered leads 

were routinely left unconnected. It was crucial for proper operation that these leads did 

not touch each other or any other conducting surface. 

g. Wire Bonding 

A microscope was used to ensure the integrity and location of each of the 

wire bonds made to the package. The package pads were mapped to pins through the use 

of a multimeter. Very low impedances verified mapping from a pad to a pin and infinite 

impedance verified a lack of an electrical connection between a pad and a pin.  
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III. SENSOR INTEGRATION AND TESTING 

 

 

Figure 23.   Experimental setup overview. 

 

Figure 24.   Packaged chip connected to the MEMS sensor using short leads. 
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A. INTEGRATION WITH HYBRID DESIGN 

The goal of this part of the study was to verify the hybrid-integration method 

reported by Lim [12]. In this method, the prepackaged SOIC was soldered to a printed 

circuit board (PCB) along with the recommended external components described 

subsequently. The advantage of this type of packaging was a semi-miniaturized discrete 

stand-alone capability. Theoretically, the MEMS device could be mounted with this setup 

and used as a single integrated system although this had not yet been demonstrated. The 

MEMS directional microphone used was a generation 7 sensor with a bending-mode 

resonant frequency of 3.5 kHz mounted in a generic package. A hole was drilled in the 

ceramic package to allow the pressure field to properly affect both sides of the device and 

to prevent squeeze-film damping.  

A minimum of external components was required to optimize the performance of 

the MS3110. It was recommended that a 0.1µF  capacitor and a 10µF  capacitor be 

installed in parallel with the V2P25 pin and the positive-power supply (see Figures 24 

and 25) to filter unwanted frequencies.  

 

 

Figure 25.   MS3110 IC is presented here with external capacitors. 
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Figure 26.   A hybrid MS3110 package with external capacitors attached to the circuit 
board is shown here. 

In this setup, it was necessary to solder wires to the bottom of an evaluation board 

(see Figure 27) in order to access all of the pins of the MS3110, which the standard J10 

cable did not offer. 

 
Figure 27.   The soldered underside of the MS3110 evaluation board is shown here. 

The solders were made, previous to this study, to the reverse of the ZIF socket. 

This enabled a packaged MS3110 to be programmed via the evaluation board without it 

actually being inserted in the ZIF socket (see Figure 29). The soldered leads were then 

connected to the hybrid PCB that was then connected via 5 cm leads to the MEMS sensor 

as shown in Figure 28. 
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Figure 28.   The full hybrid setup is shown here; note the packaged chip with the 
evaluation board. 

The experiment was started by powering the evaluation board (see Figures 27 and 

28). At this point V2P25, measured at test point 1 on the board, was 2.25 V +/- 10 mV as 

required for proper operation. If this value was not observed, but was very close to the 

required value it was adjusted using the voltage reference trim on the MS3110 software. 

If it was observed to not be close to the required value, diagnostic steps outlined in 

Section II.D.5 were taken. 

The internal capacitors were then balanced to provide a 2.25 V DC voltage at the 

output. To do this, the oscilloscope was first set to DC coupling to monitor the DC value 

of the MS3110 output. A CF value of 0.531 pF was chosen in this portion of the study in 

order to maximize the output waveform. When both CS1 and CS2 were set to 0 pF the 

output voltage read the maximum value of 5 V. When both CS1 and CS2 were set to their 

maximum value the output voltage read the minimum value of 0 V. In order to 

standardize this portion of the study, CS2 was always set to 1.083 pF. As the value CS1 

was typically in the lower regions of its dynamic range, efficient balancing started with 

CS1 at 0 pF. CS1 was then increased until the output voltage fell below 5 V. In this way, 

the balanced value of CS1 was found using an iterative bracketing method. The 
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remaining values, such as gain and the cutoff frequency of the LPF, were left at nominal 

values. 

It should be noted that for the same setup, the value of CS1 when balanced 

differed every time the system was balanced. This was because of different parasitic 

capacitances due to different lead configurations and other environmental conditions. 

Therefore, balancing a setup established a likely range for the next setup, but not an exact 

value. 

 The output voltage of the MS3110 was tapped at the Vout terminal on the 

evaluation board and connected to an Agilent Infinium DSO8064A oscilloscope. The 

board was powered with a 5 V Hewlett Packard E3615A DC Power Supply connected to 

the J6 banana jack and grounded via the J8 jack. The J9 jumper was bridged and the 

computer was connected to the board via the parallel-port connector. 

 

Figure 29.   The evaluation board layout and topology is presented here (From [11]). 
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The oscilloscope was then set to AC coupling. Typically, a range of 

approximately 50 mV/division along the ordinate and 200µs /division along the abscissa 

allowed for ideal viewing of the MS3110 output. 

The speaker was offset by 20°  and the MEMS device was excited by 

monochromatic sound at its bending-mode resonant frequency via a Hewlett Packard 

3314A function generator. The signal strength of the function generator was set to 79.3 

mV throughout this study unless otherwise noted.  

An output signal was successfully generated and recorded to be about 75 mVpp. 

This signal was sensitive to the angle of incidence and attenuated as the speaker was 

rotated away from normal and vice versa. A notable observation was significant 

harmonic distortion and corruption by noise which was not present in the results reported 

by Lim [12]. 

Lim reported that a far more tonally pure and stronger signal could be realized by 

utilizing shorter leads made possible by the hybrid design, as opposed to the traditional 

implementation of using longer leads from the evaluation board with the MS3110 in the 

ZIF socket. This incongruence between the results of this study and those reported by 

Lim was the impetus for the next phase of this study. 

B. LEAD LENGTH AND EVALUATION BOARD INTEGRATION 

Lim previously reported a 4-fold increase in the performance of the MS3110 after 

reducing the lead length [12]. This portion of the study sought to validate these results. In 

this phase of the study, the hybrid design was not used. Instead, the MS3110 pre-

packaged 16-pin SOIC was inserted directly into the commercially supplied evaluation 

board. The MS3110 and evaluation board was connected to the MEMS directional 

microphone via two sets of leads. One set of leads was relatively long (37 cm) and other 

relatively short (7 cm) as depicted in Figure 30. By interchanging the lead length and 

leaving the other experimental parameters constant, this phase of the study sought to 

investigate the effects of parasitic capacitance as a function of lead length. The MEMS 

directional microphone was connected via either the long or short leads to J3 (see Figure 

31).  
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No external components were used in this phase of the study since they reside on 

the evaluation board (see Figure 31). The remainder of the experimental setup was the 

same as in the previous section. 

                                                                   

Figure 30.   Both the 7cm (short) and the 37cm leads (long) are shown here. 

 

Figure 31.   Both setups with the long and short leads are shown here. 
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Figure 32.   Here a close up of the ZIF socket is shown with the pin 1 marking in the 
correct place verifying the MS3110 was properly inserted. 

The speaker was offset 20°  from normal and the MEMS device was excited with 

monochromatic sound at its resonant frequency. The output was recorded both with the 

short and long-lead setups. The output waveform was 65 mVpp with long leads (Figure 

33) and 56 mVpp with short leads (Figure 34). There was no noticeable improvement in 

waveform tonal purity moving from long leads to short leads. Overall, the results 

reported by Lim [12] could not be duplicated. 
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Figure 33.   The observed output waveform with long leads is shown here. 

 
Figure 34.   The observed output waveform with short leads is shown here. 
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C. SYSTEM NOISE 

In order to better isolate the source of noise inherent in the system, the noise floor 

was recorded without an excitation sound signal. The mean noise floor with the long-lead 

setup was found to be approximately 7 mV root mean square (RMS), as shown in Figure 

35. The mean noise floor with the short-lead setup was found to be approximately 3.7 

mV RMS, as shown in Figure 36. The levels noted suggest that the noise can be reduced 

by approximately 3 dB by reducing lead length.  

Next, the noise floor of the sensor was evaluated using a shielded lead roughly the 

same length as the long leads. Readings were taken both with the sensor connected and 

with two 8 pF dummy capacitors connected in place of the sensor. A RMS voltage of 

1.3mV was noted with the sensor connected and a RMS voltage of approximately the 

same value was noted when the sensor was replaced with the dummy capacitors, as 

shown in Figure 37. These results suggest that unshielded leads contribute a significant 

amount of system noise. Further, the readings with dummy capacitors in place suggest 

that the sensor has minimal impact on system noise. 

 

Figure 35.   The noise floor with long leads exhibited the largest variance. 
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Figure 36.   The noise floor with short leads showed a variance lower than the noise floor 
with long leads. 

 

Figure 37.   The noise floor with shielded leads showed a lower variance than the noise 
floor with unshielded leads. 
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D. FULL INTEGRATION 

Full integration was defined by this study as mounting the readout electronic die 

in the same miniaturized packaging as the MEMS sensor. This study accomplished this 

through use of the bare-die form of the MS3110 in two phases. In the first phase, the bare 

die was mounted in a generic package and implemented as the prepackaged MS3110 in 

the hybrid setup. In the second phase, the bare die was mounted to the same generic 

package as the MEMS sensor and directly bonded to the sensor. 

1. Bare-Die Hybrid Implementation 

The die was first attached to the generic package using silver epoxy and then the 

die was wire bonded as described previously. Full functionality of the die was achieved 

and a significant output signal was realized as shown in Figure 38. Specifically, the 100 

kHz square wave was observable (see Figure 39) and adjustable. The DC output voltage 

could be adjusted through its full range from 0V to 5V via the internal balancing 

capacitors, and the V2P25 reference voltage was observed within the required tolerances. 

 

Figure 38.   The observed output voltage with the MS3110 bare-die hybrid setup verified 
proper operation. 
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Figure 39.   It was possible to observe the oscillator signal with the MS3110 bare-die 

hybrid setup. 

2. Bare Die Full Integration 

In phase two of this portion of the study, the MS3110 and the sensor were 

mounted together on the same carrier as shown in Figure 40. A different device 

(generation 6 #1) was used with a resonant frequency at approximately 5.96 kHz. In this 

setup, the leads from the board were all attached to the single chip carrier. The LPF was 

set to 5.8 kHz and the gain was set to 4 V/V. A noise-free directionally dependent output 

voltage was realized with no significant evidence of harmonics, as illustrated in Figure 

41. 
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Figure 40.   Here the fully integrated sensor and readout die are presented on the same 
package with major components annotated. 

 

Figure 41.   The response from the fully integrated sensor was notably lacking of 
harmonic distortion. 
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E. WRITING TO THE EEPROM 

In the fully integrated packaging the leads connecting the MS3110 to the MEMS 

sensor were fixed wire bonds which gave static parasitic capacitances. Once suitable 

internal balancing capacitor values for the setup were identified they were solidified by 

writing to the MS3110 onboard EEPROM. In this manner, the device did not need to be 

reconfigured every time it was used. 

To do this, a separate 16 V power supply was needed and was connected to the J7 

banana jack of the evaluation board. It was also essential for the HV16 and WRT 

connections to be attached to the MS3110 from the evaluation board. After the 16 V 

power supply was connected, the individual settings specified by the user were loaded to 

the MS3110 EEPROM using the “Write EEPROM” button. When writing to the 

EEPROM there was not an output waveform ‘jump’ as there is when writing to the 

volatile registers. After the EEPROM write was completed the 16 V power supply was 

disconnected [16]. 

To confirm successful writing to the EEPROM, a chip reset was first issued. The 

chip reset caused the MS3110 to load the EEPROM contents into the control (volatile) 

register. Next, some of the values on the software control panel were adjusted so that they 

read something that should not be in the EEPROM. Finally, by clicking “Read Control 

Register” the software loaded the settings currently in the control register onto the control 

panel [16]. If the values changed to reflect what was previously written to the control 

register, then verification of the EEPROM control register was complete. 

Once settings were written to the MS3110, several connections were not needed 

for operation including:  SCLK, SDATA, TESTSEL, CHPRST, WRT, and HV16. Vo, 

V+, and V- were always necessary for proper operation. V2P25 was necessary only if 

there were no onboard external capacitors attached to the package. The MS3110 could 

now be disconnected and completely powered down. When it was reconnected and 

powered on, the EEPROM retained the settings last stored. Using the fully integrated 

design the settings in Table 2 were verified as successfully written to the EEPROM. 
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Table 2.   The EEPROM content that was successfully written. 

CF 0.513pF 

CS1 2.014pF 

CS2 1.083pF 

Gain 4 

LPF 3dB Frequency 5.8kHz 

 

F. FULLY INTEGRATED DESIGN TEST SETUP AND RESULTS 

1.  Testing Setup 

The performance of the fully integrated device with readout electronics was 

validated in an anechoic chamber. The device and a 5 V battery pack power supply was 

mounted to a turntable and a speaker was placed approximately two meters from the 

device as depicted in Figure 42. The device signal was taken through a coaxial-cable lead 

to ensure the purity of the output signal. 

 

Figure 42.   The experimental test setup in an anechoic chamber. 
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The readout was performed by taking the output waveform of the MS3110 

through a pre-amplifier with unity gain and a pass band of 1 kHz to 10 kHz. The RMS 

value of the waveform was then tracked over time as the turntable rotated the device 360 

degrees. In each case, the testing was performed while rotating the device in a single 

direction in order to ensure consistent results. 

The bending-mode resonant frequency in the anechoic chamber was found to be 

very near 5.96 kHz. Tests were performed at this frequency and at 5.7 kHz. A range of 

sound-pressure levels were used between 45.8 dB and 80.6 dB. The upper limit on the 

sound-pressure level was set by the dynamic range of the speaker while the lower limit 

was set by the sensitivity of the device. The calculation of sound level in decibels was 

performed using 

  Pa20log .
20 Pa
x
µ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (III.1) 

 

2. Results 

The measured waveform of the device in the anechoic chamber is shown in 

Figure 43. Consistent with previous observations was the absence of harmonic distortion. 

As was reported by Touse et al., [1], [4] the magnitude of the response was observed to 

have a cosine dependence on angle of incidence, as illustrated in Figure 44 and 48.  

 

Figure 43.   Measured output waveform in the anechoic chamber at 80.6 dB and 5.96kHz. 
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Figure 44.   The measured directional response and beam pattern at 5.96 kHz and various 
sound-intensity levels. 

 
Figure 45.   The sound pressure versus magnitude of the response at 5.7 and 5.96 kHz. 
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The magnitude of the response was approximately 3 dB lower at 5.7 kHz than it 

was at 5.96 kHz. A smaller response is expected since the device is excited off resonance. 

However, of interest was that when excited at 5.96 kHz, the magnitude of the response 

did not demonstrate an exact cosine dependence on angle of incidence. A distinct 

disturbance, shown in Figure 44, was noted at approximately -45 degrees. This 

disturbance was not noted at 5.7 kHz (see Figure 48). This unexpected behavior was 

attributed to overtaxing the amplifier in the MS3110. As the amplitude of the oscillations 

increased and the RMS value of the output followed, the amplifier approached its limits. 

This was verified by exciting the device with a directional speaker thus increasing sound 

intensity. The results of this trial are shown in Figure 46. The higher sound level showed 

very abnormal behavior at both test frequencies. When the sound level was reduced 

normal behavior was recovered as shown in Figure 47. 

 

Figure 46.   The device performance at high drive levels excited at both 5.7 and 5.96 kHz. 
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Figure 47.   The device performance at low drive levels excited at both 5.7 and 5.96 kHz. 

Further, the magnitude of the response, measured at its largest magnitude, was 

found to have a linear dependence on sound-pressure level through the range of sound 

pressures. As illustrated in Figure 45, the response was very linear when the device was 

excited by a 5.7 kHz sine wave, while some non-linearity was noticed when excited at 

5.96 kHz. This abnormal behavior at 5.96 kHz, noted also in the directional response, 

was again attributed to an overtaxing of the MS3110 amplifier. 
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Figure 48.   The measured directional response and beam pattern at 5.7 kHz and various 
sound-intensity levels. 

In order to determine directional sensitivity, a range of ten degrees (-70 to -60 

degrees) within the linear region of the directional response was chosen. This region was 

chosen as it provided the greatest resolution. The span of the output value corresponding 

to this region was used to find the device sensitivity in mV per degree. Since the recorded 

value was influenced by the noise floor, this final variable was used to find the resolution. 

With no incident sound, the noise floor was noted to have an approximate RMS voltage 

of 3 mV. Thus, it was assumed that ambient noise could influence the output voltage by 

either plus or minus 3mV resulting in 6mV of ambiguity. Device resolution followed 

from this ambiguity combined with the previously obtained sensitivity. This resulted in 

resolution as high as half a degree at a sound level of 80.6 dB and breaking down to 

much less accurate resolution at 53.7 dB. 
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Figure 49.   The recorded resolution as a function of sound pressure is shown here. 

The resonant rocking-mode frequency was predicted by finite-element analysis to 

be at approximately 3600 Hz. The highest sound-pressure levels (80.6 dB) were used to 

investigate the response at this mode. After experimentation, the rocking mode proved to 

be too faint to observe in this experimental setup. It is, however, conceivable that a 

transducer designed specifically for use at the rocking mode could be used for future 

rocking mode analysis studies.  
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IV. CONCLUSION 

A. SUMMARY 

This study presented the detail of integrating the MS3110 Universal Capacitive 

Readout IC and a MEMS directional sensor. Integration methods and successful 

operation at various levels were discussed. 

First, Lim’s hybrid design was validated. The 16-pin SOIC MS3110 is capable of 

operating outside of the evaluation board. Lim previously reported that significantly 

shortening the lead length could realize a four-fold increase in the output signal due to 

reduced parasitic capacitances [12]. By using the exact same setup and only changing the 

lead length, this study could not reproduce his results. 

Next, proper wiring and programming of the MS3110 bare die was demonstrated. 

Proper operation of the bare die MS3110 was demonstrated both in a hybrid-like design 

similar to the setup used by Lim and in a fully integrated single package. 

Finally, proper operation of the fully integrated device was demonstrated. Two 

immediately obvious benefits of a fully integrated design was the ability to program 

settings to the EEPROM and a dramatic reduction in parasitic capacitive effects. Testing 

in an anechoic chamber showed very high resolution at reasonable sound levels. Finally, 

the design demonstrated linear performance throughout the dynamic range of the 

experiment when excited at 5.7 kHz. 

This study took a significant step forward in preparing the sensor for production 

and fielding. A miniaturized sensor in acoustic detection will provide the warfighter 

unencumbered maneuverability and critical information necessary on today’s battlefield. 

B. RECOMMENDATIONS AND FUTURE WORK 

Several significant steps still need to be taken in order to completely integrate the 

sensor into a self-sufficient package. First, in order to resolve a direction the device needs 

an omnidirectional microphone with which to compare its response. This level of 

integration has not yet been accomplished.  
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Currently, the sensor only has two-dimensional direction-finding capabilities. It 

cannot provide elevation information with only a single sensor. Further, within the two-

dimensional directional resolution of the device there is still ambiguity in determining 

how to measure the angle of the incident sound. A multiple-device setup should be 

investigated to resolve these ambiguities. 

Electronics to translate the output waveforms to a user-friendly interface is 

necessary. Since a simple output waveform is of little use to someone on the battlefield 

this information would ideally terminate at a simple and intuitive graphical user interface 

(GUI) that has yet to be investigated. 

Eventually, the sensor must be a stand-alone device. In order for this to be a 

reality, an integrated and miniaturized power source must be developed for the sensor. 

The sensor must also be packaged in such a way to withstand the realities of a battlefield 

environment. A robust environmentally protective package must also be pursued. 

A final note is that the MS3110 IAMP uses a single ended sensing design in the 

amplifier. This contributes common-mode noise effects to the amplifier. A differential-

sensor circuit could dramatically reduce noise. 
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